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Collision resolution is one of the key elements in a discrete element method algorithm for modeling granular
flows. Several collision models have been proposed for this process. The hard-particle collision approach is
typically used for dilute systems, or for those in which the assumption of binary and instantaneous particle-
particle contact remains valid. As the solids fraction increases, however, multiple, enduring collisions can occur
and a soft-particle approach is more appropriate for resolving the collision dynamics. In this work, the delin-
eation between dilute and dense systems and the suitability of contact models are explored for a range of solid
fractions. Stress results for two-dimensional shear flow simulations are compared using several collision
models including an event-driven hard-particle model, a hysteretic spring soft-particle collision model follow-
ing Walton and Braun [J. Rheol. 30, 949 (1986)], and a hybrid hard-particle-with-overlap model following
Hopkins and Louge [Phys. Fluids A 3, 47 (1991)]. Results show that stresses are accurately predicted for a
range of solids fractions, coefficients of restitution, and friction coefficients by both the hard-particle-with-
overlap and soft-particle models so long as a sufficiently large loading stiffness is used for the soft-particle
model. Additional results investigating the accuracy of the collision models and the amount of collisional

overlap are presented as functions of the simulation time step and model parameters.
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I. INTRODUCTION

The flow of granular materials has been the subject of
considerable study. Shear flow of granular materials provides
a convenient and relatively simple starting point for under-
standing fundamental flow behavior. These flows are often
studied experimentally using an apparatus such as an in-
clined chute or a Couette flow device, or with computational
approaches such as the discrete element method (DEM). The
use of the DEM approach as applied to simple shear flow and
the required model parameters are the subject of the current
work.

Experimental studies of dilute granular shear flows have
been performed using an inclined chute for making measure-
ments of particle translational and rotational velocities in
rapid, quasi-two-dimensional (quasi-2D) flow [1]. For dense
systems, a Couette geometry is often used to measure par-
ticle velocities, velocity fluctuations, and packing densities
[2-4]. A Couette geometry has also been used to measure
particle velocities and shear stress for the intermediate re-
gime between the dilute and dense limits [5].

Several researchers have also compared computational re-
sults with experimental results. For example, Drake and Wal-
ton [6] found good agreement between simulation results and
experimentally measured particle translational and rotational
velocities, velocity fluctuations, and bulk density for dilute
chute flow. Also, Liitzel et al. [7] drew comparisons between
computational and experimental results for dense 2D Couette
flow. In their work, good quantitative agreement for the bulk
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density and a qualitative agreement for the velocity profiles
were reported.

In addition to these experimental approaches, modeling
granular flows using the DEM has become a common tech-
nique in efforts to better understand systems of granular ma-
terials. An inherent benefit of these simulations is that the
state of every particle is known at all times. While this in-
formation can have a high computational cost for very large
systems, it does allow for the measurement of many system
quantities of interest. For instance, velocity profiles, local
solids fraction, granular temperature, and the stress tensor are
all readily determined from particle state information. The
stress tensor is often reported in two-dimensional (see, for
example, [8-10]) and three-dimensional (see, for example,
[11]) shear flows. Stress tensor measurements allow for a
relatively straightforward comparison between simulations
of different systems and with different computational algo-
rithms, as well as with kinetic theories.

At the heart of a DEM simulation is a particle interaction
model. Upon detection of a particle contact, this particle in-
teraction model is used to calculate the postcollision veloci-
ties of the colliding particles. There are two common tech-
niques used to make this calculation, which are referred to as
the hard- and soft-particle approaches.

The hard-particle approach assumes that particles are
rigid so that collisions are instantaneous and binary. As a
result, hard-particle models are generally best suited for di-
lute, collisional flows where these assumptions are good ap-
proximations. Hard-particle models often are embedded in
event-driven collision detection schemes that increment the
simulation time from one collision to the next. Consequently,
hard-particle, event-driven simulations can be computation-
ally efficient when the time between particle collisions is
large.
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The hard-particle model has often been used in simple
shear simulations. Campbell and Brennen [12] used the
model to measure the velocity, density, and granular tem-
perature distributions for two-dimensional Couette flows.
These simulations showed the formation of a layered micro-
structure at high solids fractions. Similar work by Campbell
and Gong [8] examined the stress tensor in this system in
two dimensions. This work was subsequently extended to
study the stress in three-dimensional systems [11]. Each of
these studies presented stress results and showed normal
stress differences owing to anisotropies in the granular tem-
perature. Liss and Glasser [13] have shown that the system
stresses increase with system size to an asymptotic value
which was attributed to inelastic microstructure formation.
However, Lasinski et al. [14], have observed an increase in
the stresses beyond these asymptotic values for larger sys-
tems in 3D. This secondary increase is attributed to larger
scale banding and clustering phenomena similar to that seen
in the 2D work of Tan and Goldhirsch [15] and Hopkins and
Louge [9].

The soft-particle approach [16], on the other hand, relies
on a force-displacement (and/or force-displacement rate) re-
lation to determine the interaction between particles. The
soft-particle method is not limited by the instantaneous con-
tact time assumption and can be used to investigate long-
lasting and multiple particle contacts. This approach pro-
ceeds via small time steps and is thus referred to as being
time driven. Accurate integration of the resulting particle
equations of motion dictates a small simulation time step
and, hence, long computation times. Soft-particle methods
are generally utilized for dense, enduring-contact flows.

The soft-particle approach has also been used to obtain
stress results in various flow systems. Walton and Braun [10]
examined stresses in a two-dimensional shear flow for a sys-
tem of 30 disks as a function of shear rate, solids fraction,
friction, and elasticity. Normal stress differences were
present, especially for highly inelastic particles and low sol-
ids fractions. Babi¢ et al. [17] further examined the stress
tensor at high concentrations in two-dimensional systems,
and showed that as the concentration increased from dilute to
dense, the system transitioned from a rapid-flow to a quasi-
static regime. However, this transition is not a sharp transi-
tion, and consists of two zones: a collisional zone at concen-
trations just smaller than the phase change transition point
and a quasistatic zone just larger than this phase transition
point. The collisional zone is characterized by the formation
of force chains which increase the stress values. With in-
creasing concentration, these force chains become more fre-
quent and enduring. In the quasistatic zone, Babi¢ et al. [17]
report that force chains are present and that shear flow is
maintained through particle rolling within a narrow shear
band. Campbell [18] continued with this theme by studying
the stresses in three-dimensional shear flows of frictional
particles at very high solids fractions such that enduring,
elastic particle contacts are prevalent. Campbell identified
two regimes in this dense limit: the elastic-inertial regime in
which the stresses scale with both elastic and inertial prop-
erties, and the elastic-quasistatic regime in which the stresses
scale solely with elastic properties. The two different scal-
ings dictate that the stresses may be made dimensionless in
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one of two ways. To scale with inertial properties, the
stresses are normalized by dividing by pd®y?, where p is the
particle density, d is the particle diameter, and v is the shear
rate, while scaling with elastic properties, in 3D, the stresses
are multiplied by d/k;, where k; is the contact stiffness. In
2D, one would simply divide the stresses by the contact stiff-
ness k;. Campbell concluded that at such large solids frac-
tions, the granular matter becomes susceptible to instabili-
ties, which cause the formation of force chains resulting
in localized stresses that can vary by several orders of
magnitude.

Hopkins [19] developed another particle interaction algo-
rithm, one that is a hybrid of the event-driven hard-particle
and the time-driven soft-particle models. The algorithm pro-
ceeds via small time steps as in the soft-particle approach,
but particle collisions are resolved using the equations of the
hard-particle collision model. This approach is referred to as
the hard-particle-with-overlap model. Hopkins and Louge [9]
used this approach in their study of microstructure formation
and its effects on the stresses in a two-dimensional shear
flow system. These stress results were in fairly good agree-
ment with previous work which used the event-driven, hard-
particle approach [8]. Additionally, Louge [20] used this
approach to investigate the effects of frictional boundaries on
three-dimensional, shearing flows.

Obviously, one would prefer to use the most accurate and
computationally efficient models; however, the conditions
separating the regimes where hard- and soft-particle models
are best suited remains unclear. Furthermore, few studies
[21] have compared results from hard- and soft-particle
simulations of the same system to determine if the results
exhibit model dependence. Additionally, aside from a few
studies (see, for example, [17,18]), a large portion of DEM
work does not show the dependence of results on model
parameters such as spring stiffness and, in fact, the selection
of these model parameters often appears to be rather arbi-
trary. This paper presents stress measurements for a granular
shear flow using three common DEM computational model-
ing techniques: the event-driven hard-particle, the hard-
particle-with-overlap, and the soft-particle methods. These
results are also compared with kinetic theory predictions.
The results are compared at various solids fractions, coeffi-
cients of restitution, and friction coefficients. Additionally,
the dependence of the stress results on model parameters
including spring stiffness and time step size is also exam-
ined.

II. COMPUTATIONAL MODELS

Three DEM models are utilized in this study to model a
two-dimensional granular shear flow. The system consists of
N identical, inelastic, frictionless (frictional in Sec. III C
only) disks of diameter d and density p=4m/md*, where m is
the disk mass per unit length. The disks are placed in a
square workspace of side length L, with the quantities L and
d selected such that L/d=21. The effect of L/d on the sys-
tem stresses has been studied previously (see, for example,
[9,13,14]); however, in the present work, the system size is
set to L/d=21 to maintain reasonable computational times
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FIG. 1. A schematic of the simulated workspace.

while still using a statistically significant number of particles.
No external forces are present and no interstitial fluid effects
are considered. The horizontal x boundaries are periodic
while the vertical y boundaries utilize Lees-Edwards periodic
boundaries [22] that shear the assembly at a shear rate y. A
schematic of the system is shown in Fig. 1. Particles are
initially placed in the workspace at random positions, but
with the assembly center of mass corresponding to the geo-
metric workspace center. The particles are given an initial x
velocity randomly distributed about a uniform shear flow
profile while the initial y velocity is randomly distributed
about a zero net y velocity. The net initial momentum of the
system is zero.

Measurements of the system stress tensor are made by
calculating the sum of the kinetic and collisional contribu-
tions as described by Campbell and Gong [8]. The kinetic
stress 7y is given by

7= pACC), (1)

where v is the solids fraction within the system and C
=c¢;—(c) is the fluctuating velocity of particle i. The average
velocity {c) is the steady-state, shear velocity profile. The
collisional stress 7 is given by

d
T.=——

o > i, )

collisions

where O is the total simulated time after the initial transients,
J is a collision impulse vector, and 1 is the unit vector point-
ing from the center of particle i to the center of particle j.
The stresses are made dimensionless by the quantity pd”y’.
After the initial transients, which have a duration of approxi-
mately 500 to 2500 collisions per particle, two averaging
calculations for each stress component are made. An “instan-
taneous,” or window, average is computed for a window size
of 50 to over 500 collisions per particle for the largest solids
fractions. Additionally, a running average of each stress com-
ponent is computed. With these two averages, the point at
which each component has reached a statistically steady
value is determined, and the steady-state measurements are
recorded.

Three collision evaluation algorithms are implemented in
the simulations. These include the hard-particle, event-
driven, the hard-particle-with-overlap, and the soft-particle
approaches. A brief description of each approach is given
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below. More detail on the simulation algorithms can be
found in the references cited in the introduction.

A. Hard-particle event-driven algorithm

The hard-particle collision model uses momentum conser-
vation laws and the definition of the coefficient of normal
and tangential restitution, ey and eg, respectively, to deter-
mine the states of particles after a collision. The momentum
impulse J acting on particle i during a collision with particle
Jj is given by

1 1
J= Em(l +ey)(g-M)h + -m(q%)(l +eg)[g—n(g- )],

2
(3)

where m is the particle mass (recall that the particles are
assumed identical), g is the velocity of particle j relative to
particle i at the point of contact, fi is the unit vector pointing
from the center of particle i to the center of particle j, and ¢
is a dimensionless constant related to the moment of inertia
(q=% for a cylinder). The tangential coefficient of restitution,
defined by

[g" -i(g" )]
es=— " (4)
[g-h(g-n)]
(where the asterisk denotes a postcollision quantity), relates
the friction coefficient wu, the rolling tangential coefficient
eso, and the tangential coefficient eg as

g-h

g-n(g-h)

eS:min{,u(1+eN)<q;1> —l,eso]. (5)
The range of the tangential coefficient is —1 <eg=<1, with
es=—1,e¢=0, and eg=1 corresponding to frictionless, no-
slip, and perfectly elastic tangential rebound contacts, re-
spectively. Thus, for frictionless particles, ©=0 and eg=-1,
and so Eq. (3) simplifies to

J=3m(1 +ey)(g-h). (6)

The translational and rotational velocities ¢ and @ respec-
tively, of particle i after the collision are given by

cf=ci+J/m, (7)

.=0_).+—’

e ®)

where I=md?*/8 is the moment of inertia for a disk. Follow-
ing a collision, the times at which all future collisions occur
are determined given the current particle states, the simula-
tion advances to the next collision time, and the process re-
peats. This is known as an event-driven approach since the
simulation increments from collision event to collision event
rather than incrementing at a specified time step.

B. Hard-particle-with-overlap algorithm

The hard-particle-with-overlap model, originally devel-
oped by Hopkins [19], uses the hard-particle collision model
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[Egs. (3)—(8)], but integrates the particle equations of motion
between collisions at a specified time step. This time-driven
approach can be computationally more efficient than the
event-driven approach for systems containing many par-
ticles. Proceeding at a specified time step, however, results in
the possibility of particles overlapping prior to implementing
the hard-particle collision model. As the simulation time step
decreases, the particle overlap also decreases and, in the limit
of infinitesimal time step, the hard-particle-with-overlap
model results approach the event-driven hard-particle results.

C. Soft-particle algorithm

In the soft-particle approach the particle equations of mo-
tion are integrated in time just as with the hard-particle-with-
overlap algorithm. However, in the soft-particle approach the
interaction between particles is specified using a force-
displacement relationship (sometimes displacement rate is
also incorporated). A number of force-displacement models
have been used in recent work, and have been reviewed by
Schiifer et al. [23], Luding [24], and Herrmann and Luding
[25]. The widely used hysteretic spring normal contact force
model originally developed by Walton and Braun [10] is
implemented here. The normal force during a contact, F, is
modeled using a linear spring during loading, and another
stiffer, linear spring during unloading:

k;on  for loading
Fy= ~ . )

ky(6— &,)i  for unloading,
where k; and k; are the loading and unloading spring con-
stants, respectively, & is the overlap between particles, and &,
is the overlap at which the unloading force is zero due to
plastic deformation of the particles. The effective coefficient
of restitution for the contact is given by

en= \/kk—; (10)

Note that using Eq. (10) facilitates the comparison between
the hard- and soft-particle models; however, Eq. (10) only
specifies the ratio of the spring constants and not their mag-
nitude. The dependence of the stresses on the magnitude of
the spring constants is addressed in the following section.
The tangential force Fg is modeled by Coulombic sliding
friction,

Fg=— pu[Fy8, (11)

where § is the unit tangential vector pointing in the direction
of the tangential relative velocity.

Most of the present work has considered frictionless
disks, and thus investigates only the effects of the normal
contact models on the measured stress. By considering only
the normal interactions, the model parameters can be clearly
be set to yield the same conditions through Eq. (10). How-
ever, the effect of friction has also been briefly examined in
Sec. III C. For the frictional cases, the collision models were
modified so that Coulombic frictional forces were modeled
in the tangential direction. Elastic tangential forces (i.e.,
those modeled by a tangential spring) have not been consid-
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ered because it is difficult to directly relate the effects of the
hard-particle model’s tangential restitution and the soft-
particle model’s tangential spring. Furthermore, some previ-
ous work has used similar Coulombic friction models for
tangential forces (see, for example, [26-28]).

Prior to compilation of the current stress results, the simu-
lation code was validated by running simulations for the
same conditions as those used by previous researchers. The
hard-particle-with-overlap model was validated with the re-
sults of Hopkins and Louge [9], while the soft-particle model
was validated in the frictionless case of Walton and Braun

[10].

III. RESULTS AND DISCUSSION

Prior to making large numbers of stress tensor measure-
ments, parametric studies were conducted on the effect of the
simulation time step on the stress results for frictionless sys-
tems. These results are presented in Sec. III A, while the
stress tensor measurements are presented in Secs. III B and
I cC.

A. Effect of simulation time step on the measured
stress tensor

For a time step of small enough size, the simulation re-
sults from any model—including the stress tensor
measurements—should be independent of the time step size.
However, in the interest of reducing the computational re-
quirements, it is desired to use the largest time step possible
that still yields accurate results. To determine the appropriate
time step, the stress results were examined as a function of
time step for frictionless systems with various solids frac-
tions and coefficients of restitution.

The stresses are plotted in Fig. 2 as a function of the
average relative overlap (5)/d for the hard-particle-with-
overlap model for ey=0.9 and »=0.1 and 0.5. Both the
kinetic and collisional contributions to the stress components
Ty» Try» and 7, are presented. For the hard-particle model,
the time step is proportional to the average collisional over-
lap by

At~ Li|g| ~ LI(¥d) ~ ()/(¥d), (12)

where g is the relative collision velocity vector which scales
with yd. Thus, the average relative overlap (8)/d scales with
the time step Ar. Smaller time steps, corresponding to
smaller average collision overlaps, produce stresses that as-
ymptote to the hard-particle, event-driven simulation values.
As the average overlap increases, the simulation results be-
come less computationally expensive due to the increased
simulation time step, but the measured stresses begin to de-
viate from the asymptotic values. For a relative error of less
than 2.5% in the stress measurements for e,=0.9, the overlap
must remain within approximately 1.5% for v=0.05 and 0.1,
1% for v=0.3, 0.5% for v=0.5, and 0.2% for v=0.7. These
guidelines are similar to the results obtained by Hopkins and
Louge [9]. The guidelines for ey=0.5 show a trend similar to
that for ey=0.9 as illustrated in Fig. 3, but have slightly
smaller values at 1.0% overlap for »=0.05 and 0.1, 0.75%
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FIG. 2. Stress results from the hard-particle-with-overlap algo-
rithm for ey=0.9,v= (a) 0.1 and (b) 0.5. For sufficiently small time
steps (A is proportional to the relative overlap) the stresses ap-
proach an asymptotic value equal to the event-driven hard-particle
value. As the time step increases, the error increases. The horizontal
lines show relative error thresholds of £2.5%. Open symbols, ki-
netic contribution; closed symbols, collisional contribution.
Squares, xx component; triangles, —xy component; and diamonds,
yy component.

for v=0.3, 0.4% for v=0.5, and 0.15% for v=0.7.

In Fig. 4, the stresses are plotted as a function of soft-
particle time step for ey=0.9 and v=0.1 and 0.5. Here, the
time step is scaled by the theoretical binary collision time 7,
which is given by [24]

_mm ky
T,= 2kU2(1+\/Z>. (13)

Large time steps produce numerical instabilities. However,
time steps Af less than approximately 1/15 of the binary
collision contact time T}, produce similar stress results. This
cutoff value of Ar=T,/15 appears to hold for the various
solids fractions and loading spring stiffnesses considered in
this work. However, at ey=0.5, time steps of up to approxi-
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FIG. 3. Percent error in stress results as compared to the
asymptotic values (equivalent to the hard-particle, no-overlap re-
sults) for the hard-particle-with-overlap model at ex= (a) 0.9 and (b)
0.5.

mately 7,/6 still produced accurate stress results. In a survey
of previous DEM work, the size of time step is often about
T,/50 (see, for example, [10,17,18]) and sometimes as large
as T),/15 [29].

The results in the following section were obtained using a
small enough time step to give asymptotic stress values. For
the hard-particle-with-overlap model, the time step was se-
lected so that the overlap guidelines were met. For the soft-
particle model, the time step was 7,/33 in order to be
slightly more conservative than the 7},/15 threshold shown in
Fig. 4.

B. Stress tensor results for frictionless particles

Figure 5 plots the normal and shear stresses from the soft-
particle and hard-particle-with-overlap models as a function
of solids fraction v for ey=0.9. Both the stresses and the
soft-particle loading stiffness are made dimensionless by di-
viding by pd*>7?. The dimensionless loading stiffness is sub-
sequently denoted by kz. Also plotted in the figure are the
kinetic theory predictions of Jenkins and Richman [30]. The
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stress results from both models closely match those predicted
by kinetic theory for each of the sampled solids fractions.
The data from the soft-particle model show that as the load-
ing stiffness increases, the stress measurements asymptoti-
cally approach the hard-particle results. For the small loading
stiffnesses, the stresses are underpredicted at the large solids
fractions. For small solids fractions, however, this trend is
reversed and the stresses are slightly overpredicted. This ef-
fect is a result of large collisional overlaps which occur while
using small loading stiffnesses and will be further explained
in the coming paragraphs. Note that no data are plotted for
kz=785 for ¥<<0.2, as the particles begin to pass through one
another for the smallest stiffnesses and solids fractions. It
should be noted here that stiffnesses on the order of kz
=785 are extremely small and should not be expected to
provide accurate results. These results are merely included to
help show the trends with varying stiffness magnitudes.
Figure 6 plots the stress data for each model and the ki-
netic theory for ey=0.5. These plots show results with less
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FIG. 5. Dimensionless (a) normal and (b) shear stress results for
ey=0.9 from hard-particle-with-overlap and soft-particle simula-

tions for frictionless particles. The kinetic theory predictions of Jen-
kins and Richman [30] are indicated by the solid lines.

variation between models, yet are qualitatively similar to
those in Fig. 5. Additionally, the stresses are overpredicted
by the kinetic theory at this reduced coefficient of restitution.
A subtle difference between Figs. 5 and 6 is shown for the
largest solids fractions. For ey=0.5, in Fig. 6, the stress mea-
surements do not show the same increasing trend with load-
ing stiffness at ¥>0.7, but rather they appear to overshoot
the asymptotic value and approach it from above. This dif-
fers from the trend for ey=0.9 where the stresses monotoni-
cally increase with loading stiffness at large solids fractions.
The cause of this effect is not readily apparent, but does not
appear to be due to clustering or system size effects.

The average collisional overlap is strongly dependent on
the loading stiffness as shown in Fig. 7 where the average
overlap values for the data shown in Fig. 5 are plotted as a
function of the loading spring stiffness. Equating the initial
impact kinetic energy with the energy stored in the loading
spring at maximum deformation demonstrates that for a
given shear rate and solid fraction, the relative overlap will
vary inversely with the square root of the spring stiffness.
The simulation data support this reasoning. Hence, it is im-
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FIG. 6. Dimensionless (a) normal and (b) shear stress results for
ey=0.5 from hard-particle-with-overlap and soft-particle simula-
tions for frictionless particles. The kinetic theory predictions of Jen-
kins and Richman [30] are indicated by the solid lines. Symbols as
in Fig. 5.

portant to have a sufficiently stiff spring constant to maintain
small average overlaps.

In Fig. 8 the average relative overlaps are shown as a
function of solids fraction for a range of soft-particle loading
stiffnesses. The average overlap can become quite large at
small solids fractions and small loading stiffnesses. No data
are included for k; =785 at the smallest solids fractions as the
overlap becomes so large the particles begin to pass through
one another. The large overlaps at small solids fractions are
attributed to larger relative impact velocities. At small solids
fractions, particles can move in the transverse (y) direction
from regions of small mean x velocity into areas of higher
mean x velocity, and vice versa. Collisions between particles
in these layers will have a large relative impact velocity re-
sulting in a large overlap. The effect of solids fraction on the
impact velocity can be estimated from the following simple
analysis. The distance a particle travels before impacting an-
other particle, i.e., the mean free path A, will scale with the
particle diameter and be inversely proportional to the solids
fraction [31,32]:

Dimensionless Loading Stiffness, k! =k, /(pd*y’)

FIG. 7. Average soft-particle relative overlap as a function of
the loading spring constant for varying solids fractions at ey=0.9
for frictionless particles.

d
AN~ —. (14)
v
The relative impact velocity g of particles from different

transverse layers will be the shear rate multiplied by the
mean free path:

d
:)\7~—7. (15)
14

Hence, the relative impact velocity is expected to be propor-
tional to the particle diameter and shear rate, and inversely
proportional to the solids fraction. The data in Fig. 8 support
this analysis for ¥<<0.5.

The data in Fig. 8 also indicate that the average overlap

begins to increase at the largest solids fractions. This is po-
tentially due to the formation of force chains [33]. Figure 9
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FIG. 8. Average relative overlap for soft-particle collisions as a
function of system solids fraction for the given loading spring stiff-
nesses and frictionless particles at ey=0.9.
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solids fraction for the given loading spring stiffnesses and friction-
less particles at ey=0.9.

plots the average contact time .. scaled by 7}, as a function
of solids fraction. An average contact time of 7./7T,=1 indi-
cates the flow is purely collisional and consists solely of
binary collisions. Values slightly above 1 indicate that some
longer-lasting collisions exist, although the flow may still be
described as collisional [18]. For »>0.7, the average colli-
sion time increases sharply. These long-lasting contacts sig-
nify that the flow is noncollisional and consists of particles in
force chains. This causes the average overlap to increase at
the largest solids fractions as shown in Fig. 8. Figure 9
shows that this transition begins at smaller solids fractions
for smaller values of the spring stiffness.

The data in Figs. 5 and 6 make it clear that loading stiff-
ness must be sufficiently large to obtain asymptotic stress
measurements that approach the hard-particle predictions.
Additionally, the preceding discussion demonstrates that col-
lisional overlap is an important variable in soft-particle mod-
eling. By plotting the stress measurements as a function of
loading stiffness, it is possible to determine a minimum stiff-
ness above which the stress results vary by less than +2.5%.
These minimum loading stiffnesses are summarized in Fig.
10 for each solids fraction and coefficient of restitution. For
either small or large solids fractions, relatively large stiff-
nesses are required to maintain small values of collisional
overlap, and thus asymptotic stress results. But, for moderate
solids fractions, a smaller stiffness will still yield accurate
results. The stiffness must be large at small solids fractions
because overlap quickly increases for the large relative ve-
locity collisions that occur at small solids fractions (see Fig.
8). For large solids fractions, the stiffness must also be large
because the dependence of stresses on overlap is intensified
by the large solids fraction.

The deviation in the stress measurements at small stiff-
nesses shown in Figs. 5 and 6 is caused by the large variation
in overlap shown in Figs. 7 and 8. This effect of overlap can
be circumvented to some degree by considering the effective
particle diameter d, s, which is given by
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/(pd*Y)

min
L

T T T T T T T T

T T T TIT]

T T T

0 0.2 0.4 0.6 0.8
Solids Fraction, v=Nnd%/4L?

Minimum Dimensionless Loading Stiffness, k
)

FIG. 10. Minimum dimensionless loading stiffness for the soft-
particle model as a function of solids fraction for frictionless par-
ticles and ey=0.5 and 0.9. Using stiffnesses larger than this mini-
mum will ensure that stress results are within +2.5% error from the
respective asymptotic values.

def.'f=d—<5>, (16)

where (&) is the average collisional overlap, 0 <(8)<d. For
conditions resulting in large overlaps, the effective particle
diameter can be significantly smaller than the true diameter.
This smaller effective diameter in turn leads to a smaller
effective solids fraction v,z

N(d—(8)*
Veff_ 4L2 . (17)
By plotting the stress measurements of Fig. 5(a) as a function
of the effective solids fraction, as shown in Fig. 11, the data
for the smaller loading stiffnesses are shifted to the left and
much more closely follow the trend of both the hard-particle-
with-overlap model and the soft-particle model with the larg-
est loading stiffnesses. This could potentially be used as a
time saving feature in future DEM modeling efforts. One
could use an artificially small loading stiffness in order to use
a larger time step by simply making a corresponding increase
to the particle size.

C. Stress tensor results for frictional particles

Figure 12 plots the normal stresses from the soft-particle
and hard-particle-with-overlap models as a function of solids
fraction v for frictional particles with u=0.5 and ey=0.9.
The stresses show an overall decrease in magnitude as com-
pared to the frictionless case shown in Fig. 5(a). This is
attributed to the addition of frictional dissipation and the
shift of some kinetic energy from translational to rotational
modes. Each of these changes causes a reduction in both
fluctuating velocities and collisional forces, thereby leading
to reduced stress magnitudes.

Two other observations can also be made from the data in
Fig. 12. First, there is a diminished dependence on the spring
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FIG. 11. Dimensionless normal stresses for ey=0.9 [same data
as in Fig. 5(a)] as a function of the effective solids fraction [Eq.
(17)]. The use of this effective solids fraction accounts for the dif-
ferences in collisional overlap resulting from different loading stiff-
nesses. Thus, the soft-particle results for small loading stiffnesses
more closely follow the trend for large loading stiffnesses.

stiffness for the frictional case. Second, at the largest solids
fraction, as the spring stiffness increases, the stresses over-
shoot and then come back to the asymptotic value. Both of
these effects were also seen in the frictionless case for ey
=0.5 in Fig. 6. Thus, these effects appear for systems with
significant collisional dissipation, regardless if it is due to
inelasticity or friction. Results presented by Babi¢ er al. [17]
also show this overshoot for solids fractions of 0.70 and 0.75
for ©=0.5 and ey=0.8. They attributed this overshoot to po-
tential statistical uncertainties. The present results seem to
indicate that the overshoot in stresses may be due to more
than simple statistical uncertainty, as the average stress val-
ues show the overshoot. A possible cause may be due to the
competing effects of the effective solids fraction (stresses
increasing with spring stiffness) and an effect of average
contact time (average contact time and stresses decrease with

10°
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FIG. 12. Dimensionless normal stress results for frictional par-
ticles with w=0.5 and ey=0.9.
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increasing spring stiffness) that does not show up for the
nearly elastic, frictionless case.

Large fluctuations between window averaged stress mea-
surements over time are observed in the present results as
shown in Fig. 13(a). These fluctuations are greater for fric-
tional systems as compared to frictionless systems, and this
increase in fluctuation magnitude is attributed to changes in
granular structure as shown in Figs. 13(b) and 13(c). The
granular structure tends to be in either a semiordered state
with slip planes oriented in the streamwise direction or in a
more random structure without these streamwise planes
present. When the streamwise planes are present, Fig. 13(b),
the stresses are near a minimum value. The structure may
change such that these slip planes do not exist or are not
oriented in the streamwise direction, Fig. 13(c), at which
point for frictional particles, long, diagonally oriented force
chains form which lead to a sharp increase in stresses. The
shading of each particle in Figs. 13(b) and 13(c) is propor-
tional to the instantaneous force acting on each particle,
where darker shades indicate larger forces. The particle shad-
ing in Fig. 13(c) makes the formation of force chains very
apparent. In contrast, for the frictionless case, when the slip
planes are not oriented in the streamwise direction, the par-
ticles are able to still move past one another without the
formation of extensive force chains and the corresponding
sharp increase in stresses.

The data for frictional particles with u=0.5 and ey=0.5
also show good agreement between models, little depen-
dence on the spring stiffness for moderate solids fractions,
overshoot of stresses for »=0.78, and an overall decrease in
the magnitude of the stresses as compared to Figs. 6 and 12.

The stress results for intermediate values of the friction
coefficients and ey=0.9 are shown in Fig. 14. With the ad-
dition of a small amount of friction, the stresses are signifi-
cantly reduced. These results also show the extent to which
the stresses become nearly invariant with the examined
spring stiffnesses for highly frictional particles.

IV. CONCLUSIONS

This work shows that accurate stress results are obtained
by both hard-particle-with-overlap and soft-particle ap-
proaches over a wide range of solids fractions, for two dif-
ferent coefficients of restitution, and for the frictionless and
frictional particles examined herein. The stresses from the
soft-particle model begin to show increasing deviation as the
loading stiffness decreases, but with a sufficiently large load-
ing stiffness, the soft-particle model asymptotes to the hard-
particle predictions. The value of spring stiffness which may
be deemed “sufficiently large” varies with solid fraction and
coefficient of restitution. Relatively large loading stiffnesses
are required for systems with solids fractions near the high or
low extremes. Smaller loading stiffnesses may be used for
systems with moderate solids fractions.

For frictional particles, good agreement between the mod-
els is also obtained. Additionally, the magnitude of stresses
decreases with the addition of friction and the stresses be-
come relatively insensitive to spring stiffness for large fric-
tion coefficients.
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Accurate stress results are also dependent on proper se-
lection of the time step. Increasing the simulation time step
results in improved computation times, but at the expense of
accuracy. Determination of the proper time step is a straight-
forward process using the parametric studies described pre-
viously. For the soft-particle model, the time step must be
small enough for the integration scheme to yield accurate
results. Parametric studies show that a time step of 7},/15
produces satisfactory results, but a more conservative time
step of T,/33 was used for all of the present simulations. For
the hard-particle-with-overlap model, too large of a time step
can cause large overlaps and, if the overlaps are large
enough, result in erroneous stress measurements. The stress
results and overlap threshold are in agreement with previous
work [9].

The results presented here indicate that for a dilute granu-
lar shear flow, each of the three tested models predicts simi-
lar flow stresses that also agree well with those predicted by
kinetic theory. From the standpoint of accuracy, there does
not seem to be any certain set of conditions for which one
model outperforms another. Selection of a contact algorithm
then appears to be primarily based on how the computation
speed of the algorithm scales with the system size.
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